102515: [AtCoder]ABC251 F - Two Spanning Trees
Description
Score : $500$ points
Problem Statement
You are given an undirected graph $G$ with $N$ vertices and $M$ edges. $G$ is simple (it has no self-loops and multiple edges) and connected.
For $i = 1, 2, \ldots, M$, the $i$-th edge is an undirected edge $\lbrace u_i, v_i \rbrace$ connecting Vertices $u_i$ and $v_i$.
Construct two spanning trees $T_1$ and $T_2$ of $G$ that satisfy both of the two conditions below. ($T_1$ and $T_2$ do not necessarily have to be different spanning trees.)
-
$T_1$ satisfies the following.
If we regard $T_1$ as a rooted tree rooted at Vertex $1$, for any edge $\lbrace u, v \rbrace$ of $G$ not contained in $T_1$, one of $u$ and $v$ is an ancestor of the other in $T_1$.
-
$T_2$ satisfies the following.
If we regard $T_2$ as a rooted tree rooted at Vertex $1$, there is no edge $\lbrace u, v \rbrace$ of $G$ not contained in $T_2$ such that one of $u$ and $v$ is an ancestor of the other in $T_2$.
We can show that there always exists $T_1$ and $T_2$ that satisfy the conditions above.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $N-1 \leq M \leq \min\lbrace 2 \times 10^5, N(N-1)/2 \rbrace$
- $1 \leq u_i, v_i \leq N$
- All values in input are integers.
- The given graph is simple and connected.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_M$ $v_M$
Output
Print $(2N-2)$ lines to output $T_1$ and $T_2$ in the following format. Specifically,
- The $1$-st through $(N-1)$-th lines should contain the $(N-1)$ undirected edges $\lbrace x_1, y_1\rbrace, \lbrace x_2, y_2\rbrace, \ldots, \lbrace x_{N-1}, y_{N-1}\rbrace$ contained in $T_1$, one edge in each line.
- The $N$-th through $(2N-2)$-th lines should contain the $(N-1)$ undirected edges $\lbrace z_1, w_1\rbrace, \lbrace z_2, w_2\rbrace, \ldots, \lbrace z_{N-1}, w_{N-1}\rbrace$ contained in $T_2$, one edge in each line.
You may print edges in each spanning tree in any order. Also, you may print the endpoints of each edge in any order.
$x_1$ $y_1$ $x_2$ $y_2$ $\vdots$ $x_{N-1}$ $y_{N-1}$ $z_1$ $w_1$ $z_2$ $w_2$ $\vdots$ $z_{N-1}$ $w_{N-1}$
Sample Input 1
6 8 5 1 4 3 1 4 3 5 1 2 2 6 1 6 4 2
Sample Output 1
1 4 4 3 5 3 4 2 6 2 1 5 5 3 1 4 2 1 1 6
In the Sample Output above, $T_1$ is a spanning tree of $G$ containing $5$ edges $\lbrace 1, 4 \rbrace, \lbrace 4, 3 \rbrace, \lbrace 5, 3 \rbrace, \lbrace 4, 2 \rbrace, \lbrace 6, 2 \rbrace$. This $T_1$ satisfies the condition in the Problem Statement. Indeed, for each edge of $G$ not contained in $T_1$:
- for edge $\lbrace 5, 1 \rbrace$, Vertex $1$ is an ancestor of $5$;
- for edge $\lbrace 1, 2 \rbrace$, Vertex $1$ is an ancestor of $2$;
- for edge $\lbrace 1, 6 \rbrace$, Vertex $1$ is an ancestor of $6$.
$T_2$ is another spanning tree of $G$ containing $5$ edges $\lbrace 1, 5 \rbrace, \lbrace 5, 3 \rbrace, \lbrace 1, 4 \rbrace, \lbrace 2, 1 \rbrace, \lbrace 1, 6 \rbrace$. This $T_2$ satisfies the condition in the Problem Statement. Indeed, for each edge of $G$ not contained in $T_2$:
- for edge $\lbrace 4, 3 \rbrace$, Vertex $4$ is not an ancestor of Vertex $3$, and vice versa;
- for edge $\lbrace 2, 6 \rbrace$, Vertex $2$ is not an ancestor of Vertex $6$, and vice versa;
- for edge $\lbrace 4, 2 \rbrace$, Vertex $4$ is not an ancestor of Vertex $2$, and vice versa.
Sample Input 2
4 3 3 1 1 2 1 4
Sample Output 2
1 2 1 3 1 4 1 4 1 3 1 2
Tree $T$, containing $3$ edges $\lbrace 1, 2\rbrace, \lbrace 1, 3 \rbrace, \lbrace 1, 4 \rbrace$, is the only spanning tree of $G$. Since there are no edges of $G$ that are not contained in $T$, obviously this $T$ satisfies the conditions for both $T_1$ and $T_2$.
Input
题意翻译
给定无向连通简单图,求其两个以 $ 1 $ 为根的生成树 $ T_1, T_2 $,满足: * 对于 $ T_1 $,其任意一条非树边连结的两个节点均存在祖先关系,即一个点为另一个点的祖先。 * 对于 $ T_2 $,其任意一条非树边连结的两个节点均不存在祖先关系。Output
问题描述
你得到了一个有N个顶点和M条边的无向图G。 G是简单(它没有自环和多条边)并且是连通的。
对于$i = 1, 2, \ldots, M$,第i条边是一个连接顶点$u_i$和$v_i$的无向边$\lbrace u_i, v_i \rbrace$。
构造两个G的生成树$T_1$和$T_2$,使它们同时满足以下两个条件。($T_1$和$T_2$不一定非得是不同的生成树。)
-
$T_1$满足以下条件。
如果我们把$T_1$视为以顶点1为根的树,对于G中不包含在$T_1$中的任意一条边$\lbrace u, v \rbrace$,$u$和$v$中的一个在$T_1$中是另一个的祖先。
-
$T_2$满足以下条件。
如果我们把$T_2$视为以顶点1为根的树,不存在G中不包含在$T_2$中的边$\lbrace u, v \rbrace$,使得$u$和$v$中的一个在$T_2$中是另一个的祖先。
我们可以证明,总存在满足上述条件的$T_1$和$T_2$。
约束
- $2 \leq N \leq 2 \times 10^5$
- $N-1 \leq M \leq \min\lbrace 2 \times 10^5, N(N-1)/2 \rbrace$
- $1 \leq u_i, v_i \leq N$
- 输入中的所有值都是整数。
- 给定的图是简单且连通的。
输入
输入以标准输入的形式给出,如下所示:
$N$ $M$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_M$ $v_M$
输出
按照以下格式输出$T_1$和$T_2$,打印$(2N-2)$行。具体来说,
- 第$1$行到第$(N-1)$行应该包含$T_1$中的$(N-1)$条无向边$\lbrace x_1, y_1\rbrace, \lbrace x_2, y_2\rbrace, \ldots, \lbrace x_{N-1}, y_{N-1}\rbrace$,每行一条边。
- 第$N$行到第$(2N-2)$行应该包含$T_2$中的$(N-1)$条无向边$\lbrace z_1, w_1\rbrace, \lbrace z_2, w_2\rbrace, \ldots, \lbrace z_{N-1}, w_{N-1}\rbrace$,每行一条边。
你可以按照任意顺序打印每棵生成树中的边。此外,你还可以按照任意顺序打印每条边的端点。
$x_1$ $y_1$ $x_2$ $y_2$ $\vdots$ $x_{N-1}$ $y_{N-1}$