102437: [AtCoder]ABC243 Ex - Builder Takahashi (Enhanced version)
Description
Score : $600$ points
Problem Statement
There is a grid with $H \times W$ squares. Let $(i,j)$ denote the square at the $i$-th row from the top and $j$-th column from the left.
$C_{i,j}$ represents the state of each square. Each square is in one of the following four states.
S
: The starting point. The grid has exactly one starting point.G
: The goal. The grid has exactly one goal..
: A constructible square, where a wall can be built.O
: An unconstructible square, where a wall cannot be built.
Aoki intends to start at the starting point and get to the goal. When he is at $(i,j)$, he can go to $(i+1,j)$, $(i,j+1)$, $(i-1,j)$, or $(i,j-1)$. It is not allowed to exit the grid or enter a square with a wall.
Takahashi decides to build a wall on one or more constructible squares of his choice before Aoki starts so that there is no way for Aoki to reach the goal. Here, the starting point and the goal cannot be chosen.
Is it possible for Takahashi to build walls to prevent Aoki from reaching the goal? If it is possible, also compute the two values below:
- the minimum number $n$ of walls needed to prevent Aoki from reaching the goal, and
- the number of ways modulo $998244353$, $r$, to achieve that minimum number of walls.
Constraints
- $2 \leq H \leq 100$
- $2 \leq W \leq 100$
- $C_{i,j}$ is
S
,G
,.
, orO
. - Each of
S
andG
appears exactly once in $C_{i,j}$.
Input
Input is given from Standard Input in the following format:
$H$ $W$ $C_{1,1}$$C_{1,2}$$\dots$$C_{1,W}$ $C_{2,1}$$C_{2,2}$$\dots$$C_{2,W}$ $\vdots$ $C_{H,1}$$C_{H,2}$$\dots$$C_{H,W}$
Output
If it is possible to build walls to prevent Aoki from reaching the goal, print the string Yes
and the integers $n$ and $r$ defined in the Problem Statement, in the following format:
Yes $n$ $r$
Otherwise, print No
.
Sample Input 1
4 3 S.. O.. ..O ..G
Sample Output 1
Yes 3 6
Let #
represent a square to build a wall on. The six ways to achieve the minimum number of walls are as follows:
S#. S.# S.. S.. S.. S.. O#. O#. O## O.# O.# O.# #.O #.O #.O ##O .#O .#O ..G ..G ..G ..G #.G .#G
Sample Input 2
3 2 .G .O .S
Sample Output 2
No
Regardless of how Takahashi builds walls, Aoki can always reach the goal.
Sample Input 3
2 2 S. .G
Sample Output 3
Yes 2 1
Sample Input 4
10 10 OOO...OOO. .....OOO.O OOO.OO.OOO OOO..O..S. ....O.O.O. .OO.O.OOOO ..OOOG.O.O .O.O..OOOO .O.O.OO... ...O..O..O
Sample Output 4
Yes 10 12
Input
Output
S
: 起点。网格中只有一个起点。G
: 终点。网格中只有一个终点。.
: 可建造方格,可以在此建造墙壁。O
: 不可建造方格,不能在此建造墙壁。
- 阻止Aoki到达终点所需的最小墙壁数量$n$,和
- 以$998244353$为模,实现该最小墙壁数量的方案数$r$。
- $2 \leq H \leq 100$
- $2 \leq W \leq 100$
- $C_{i,j}$是
S
、G
、.
或O
。 S
和G
在$C_{i,j}$中分别出现一次。
Yes
和定义在问题描述中的整数$n$和$r$:
```python
Yes
$n$ $r$
```
否则,输出No
。
部分
样例输入 1
```less
4 3
S..
O..
..O
..G
```
部分
样例输出 1
```python
Yes
3 6
```
让#
表示要建造墙壁的方格。实现最小墙壁数量的六种方式如下:
```less
S#. S.# S.. S.. S.. S..
O#. O#. O## O.# O.# O.#
#.O #.O #.O ##O .#O .#O
..G ..G ..G ..G #.G .#G
```
部分
样例输入 2
```less
3 2
.G
.O
.S
```
部分
样例输出 2
```python
No
```
无论Takahashi如何建造墙壁,Aoki总是可以到达终点。
部分
样例输入 3
```less
2 2
S.
.G
```
部分
样例输出 3
```python
Yes
2 1
```
部分
样例输入 4
```less
10 10
OOO...OOO.
.....OOO.O
OOO.OO.OOO
OOO..O..S.
....O.O.O.
.OO.O.OOOO
..OOOG.O.O
.O.O..OOOO
.O.O.OO...
...O..O..O
```
部分
样例输出 4
```python
Yes
10 12
```