102390: [AtCoder]ABC239 A - Horizon
Description
Score : $100$ points
Problem Statement
Assuming that the horizon seen from a place $x$ meters above the ground is $\sqrt{x(12800000+x)}$ meters away, find how many meters away the horizon seen from a place $H$ meters above the ground is.
Constraints
- $1 \leq H \leq 10^5$
- $H$ is an integer.
Input
Input is given from Standard Input in the following format:
$H$
Output
Print the answer.
Your answer will be considered correct when the absolute or relative error from the judge's answer is at most $10^{-6}$.
Sample Input 1
333
Sample Output 1
65287.907678222
We have $\sqrt{333(12800000+333)} = 65287.9076782\ldots$. Outputs such as 65287.91
would also be accepted.
Sample Input 2
634
Sample Output 2
90086.635834623
We have $\sqrt{634(12800000+634)} = 90086.6358346\ldots$.
Input
题意翻译
给定正整数 $ x $ ,请求出 $ \sqrt{x(12800000+x)} $ 的值。Output
分数:100分
问题描述
假设从地面以上$x$米的位置看到的地平线距离是$\sqrt{x(12800000+x)}$米,那么从地面以上$H$米的位置看到的地平线距离是多少米?
限制条件
- $1 \leq H \leq 10^5$
- $H$是一个整数。
输入
输入从标准输入按以下格式给出:
$H$
输出
打印答案。
当与裁判答案的绝对或相对误差不超过$10^{-6}$时,你的答案将被视为正确。
样例输入1
333
样例输出1
65287.907678222
我们有$\sqrt{333(12800000+333)} = 65287.9076782\ldots$。输出如65287.91
也会被接受。
样例输入2
634
样例输出2
90086.635834623
我们有$\sqrt{634(12800000+634)} = 90086.6358346\ldots$。