102365: [AtCoder]ABC236 F - Spices
Description
Score : $500$ points
Problem Statement
The shop supaisu-ya sells $2^N-1$ kinds of spices: Spice $1$, Spice $2$, $\ldots$, Spice $2^N-1$. One pack of each spice is in stock. For each $i = 1, 2, \ldots, 2^N-1$, Spice $i$ costs $c_i$ yen. Takahashi can buy any of these spices.
He plans to make curry after getting home by choosing one or more of the bought spices and mixing them.
If $k$ spices, Spice $A_1$, Spice $A_2$, $\ldots$, Spice $A_k$, are mixed, the hotness of the resulting curry is $A_1 \oplus A_2 \oplus \cdots \oplus A_k$, where $\oplus$ denotes the bitwise XOR.
Takahashi wants to decide the hotness of the curry based on his feeling after getting home. For now, he will buy a set of spices that allows him to make curry of any hotness from $1$ through $2^N-1$. Print the minimum possible amount of money Takahashi pays.
Constraints
- $2 \leq N \leq 16$
- $1 \leq c_i \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $c_1$ $c_2$ $\ldots$ $c_{2^N-1}$
Output
Print the minimum possible amount of money Takahashi pays.
Sample Input 1
2 4 5 3
Sample Output 1
7
If Takahashi buys Spice $1$ and $3$, he can make curry of any hotness from $1$ through $3$, as follows.
- To make curry of hotness $1$, use just Spice $1$.
- To make curry of hotness $2$, mix Spice $1$ and Spice $3$.
- To make curry of hotness $3$, use just Spice $3$.
Here, Takahashi pays $c_1 + c_3 = 4 + 3 = 7$ yen, which is the minimum possible amount he pays.
Sample Input 2
4 9 7 9 7 10 4 3 9 4 8 10 5 6 3 8
Sample Output 2
15
Input
题意翻译
有 $2 ^ N - 1$ 个数字,分别编号为 $1, 2, \dots, 2 ^ N - 1$,想获得编号为 $i$ 的数字需要支付 $c_i$ 的代价。 现在你可以从这些数字中选出一些数,使得你可以通过你选择的某些数的编号的异或和来表示出 $[1, 2 ^ N - 1]$ 中的所有数。 请你求出最少需要支付多少代价。Output
分数:$500$分
问题描述
杂货店supaisu-ya出售$2^N-1$种香料:香料$1$、香料$2$、$\ldots$、香料$2^N-1$。每种香料都有一个包装在库存中。 对于每个$i = 1, 2, \ldots, 2^N-1$,香料$i$的价格为$c_i$日元。 Takahashi可以购买这些香料中的任意一种。
他计划在回家后选择购买的一种或多种香料进行混合来制作咖喱。 如果混合了$k$种香料,香料$A_1$、香料$A_2$、$\ldots$、香料$A_k$,那么混合后的咖喱的辣度为$A_1 \oplus A_2 \oplus \cdots \oplus A_k$,其中$\oplus$表示按位异或。
Takahashi想在回家后根据自己的感觉来决定咖喱的辣度。目前,他将购买一组香料,使他能够制作辣度从$1$到$2^N-1$的咖喱。输出Takahashi支付的最少金额。
限制条件
- $2 \leq N \leq 16$
- $1 \leq c_i \leq 10^9$
- 输入中的所有值都是整数。
输入
输入以标准输入的形式给出:
$N$ $c_1$ $c_2$ $\ldots$ $c_{2^N-1}$
输出
输出Takahashi支付的最少金额。
样例输入1
2 4 5 3
样例输出1
7
如果Takahashi购买香料$1$和$3$,他可以制作辣度从$1$到$3$的咖喱,如下所示。
- 要制作辣度为$1$的咖喱,只使用香料$1$。
- 要制作辣度为$2$的咖喱,将香料$1$和香料$3$混合。
- 要制作辣度为$3$的咖喱,只使用香料$3$。
在这里,Takahashi支付了$c_1 + c_3 = 4 + 3 = 7$日元,这是他支付的最少金额。
样例输入2
4 9 7 9 7 10 4 3 9 4 8 10 5 6 3 8
样例输出2
15