102323: [AtCoder]ABC232 D - Weak Takahashi
Description
Score : $400$ points
Problem Statement
There is a $H \times W$-square grid with $H$ horizontal rows and $W$ vertical columns. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left.
Each square is described by a character $C_{i, j}$, where $C_{i, j} = $ .
means $(i, j)$ is an empty square, and $C_{i, j} = $ #
means $(i, j)$ is a wall.
Takahashi is about to start walking in this grid. When he is on $(i, j)$, he can go to $(i, j + 1)$ or $(i + 1, j)$. However, he cannot exit the grid or enter a wall square. He will stop when there is no more square to go to.
When starting on $(1, 1)$, at most how many squares can Takahashi visit before he stops?
Constraints
- $1 \leq H, W \leq 100$
- $H$ and $W$ are integers.
- $C_{i, j} = $
.
or $C_{i, j} = $#
. $(1 \leq i \leq H, 1 \leq j \leq W)$ - $C_{1, 1} = $
.
Input
Input is given from Standard Input in the following format:
$H$ $W$ $C_{1, 1} \ldots C_{1, W}$ $\vdots$ $C_{H, 1} \ldots C_{H, W}$
Output
Print the answer.
Sample Input 1
3 4 .#.. ..#. ..##
Sample Output 1
4
For example, by going $(1, 1) \rightarrow (2, 1) \rightarrow (2, 2) \rightarrow (3, 2)$, he can visit $4$ squares.
He cannot visit $5$ or more squares, so we should print $4$.
Sample Input 2
1 1 .
Sample Output 2
1
Sample Input 3
5 5 ..... ..... ..... ..... .....
Sample Output 3
9
Input
题意翻译
输入一个 $H\times W$ 的字符矩阵,`.` 表示空地,`#` 表示障碍,从 $(1,1)$ 出发,问最多经过几个格子。 Translated by @[$\tt{\_YXJS\_}$](/user/516346).Output
得分:400分
问题描述
有一个$H \times W$的正方形网格,有$H$行水平行和$W$列垂直列。让$(i, j)$表示从顶部数第$i$行、从左数第$j$列的方格。
每个方格用一个字符$C_{i, j}$表示,其中$C_{i, j} = $ .
表示$(i, j)$是一个空方格,$C_{i, j} = $ #
表示$(i, j)$是一堵墙。
高桥即将在这个网格中开始行走。当他站在$(i, j)$时,他可以去$(i, j + 1)$或$(i + 1, j)$。但是,他不能离开网格或进入墙的方格。当他没有更多的地方可去时,他会停止。
当从$(1, 1)$开始时,高桥在停止之前最多可以访问多少个方格?
约束
- $1 \leq H, W \leq 100$
- $H$和$W$是整数。
- $C_{i, j} = $
.
或$C_{i, j} = $#
。$(1 \leq i \leq H, 1 \leq j \leq W)$ - $C_{1, 1} = $
.
输入
输入将从标准输入以以下格式给出:
$H$ $W$ $C_{1, 1} \ldots C_{1, W}$ $\vdots$ $C_{H, 1} \ldots C_{H, W}$
输出
打印答案。
样例输入1
3 4 .#.. ..#. ..##
样例输出1
4
例如,通过走$(1, 1) \rightarrow (2, 1) \rightarrow (2, 2) \rightarrow (3, 2)$,他可以访问$4$个方格。
他不能访问$5$个或更多的方格,所以我们应该打印$4$。
样例输入2
1 1 .
样例输出2
1
样例输入3
5 5 .....