102286: [AtCoder]ABC228 G - Digits on Grid
Description
Score : $600$ points
Problem Statement
There is a grid with $H$ horizontal rows and $W$ vertical columns, where each square contains a digit between $1$ and $9$. For each pair of integers $(i, j)$ such that $1 \leq i \leq H$ and $1 \leq j \leq W$, the digit written on the square at the $i$-th row from the top and $j$-th column from the left is $c_{i, j}$.
Using this grid, Takahashi and Aoki will play together. First, Takahashi chooses a square and puts a piece on it. Then, the two will repeat the following procedures, 1. through 4., $N$ times.
- Takahashi does one of the following two actions.
- Move the piece to another square that shares a row with the square the piece is on.
- Do nothing.
- Takahashi writes on a blackboard the digit written on the square the piece is on.
- Aoki does one of the following two actions.
- Move the piece to another square that shares a column with the square the piece is on.
- Do nothing.
- Aoki writes on the blackboard the digit written on the square the piece is on.
After that, there will be $2N$ digits written on the blackboard. Let $d_1, d_2, \ldots, d_{2N}$ be those digits, in the order they are written. The two boys will concatenate the $2N$ digits in this order to make a $2N$-digit integer $X := d_1d_2\ldots d_{2N}$.
Find the number, modulo $998244353$, of different integers that $X$ can become.
Constraints
- $2 \leq H, W \leq 10$
- $1 \leq N \leq 300$
- $1 \leq c_{i, j} \leq 9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$H$ $W$ $N$ $c_{1, 1}$$c_{1, 2}$$\cdots$$c_{1, W}$ $c_{2, 1}$$c_{2, 2}$$\cdots$$c_{2, W}$ $\vdots$ $c_{H, 1}$$c_{H, 2}$$\cdots$$c_{H, W}$
Output
Print the number, modulo $998244353$, of different integers that $X$ can become.
Sample Input 1
2 2 1 31 41
Sample Output 1
5
Below is one possible scenario.
- First, Takahashi puts the piece on $(1, 2)$.
- Takahashi moves the piece from $(1, 2)$ to $(1, 1)$, and then writes the digit $3$ written on $(1, 1)$.
- Aoki moves the piece from $(1, 1)$ to $(2, 1)$, and then writes the digit $4$ written on $(2, 1)$.
In this case, we have $X = 34$.
Below is another possible scenario.
- First, Takahashi puts the piece on $(2, 2)$.
- Takahashi keeps the piece on $(2, 2)$, and then writes the digit $1$ written on $(2, 2)$.
- Aoki moves the piece from $(2, 2)$ to $(1, 2)$, and then writes the digit $1$ written on $(1, 2)$.
In this case, we have $X = 11$.
Other than these, $X$ can also become $33$, $44$, or $43$, but nothing else.
That is, there are five integers that $X$ can become, so we print $5$.
Sample Input 2
2 3 4 777 777
Sample Output 2
1
$X$ can only become $77777777$.
Sample Input 3
10 10 300 3181534389 4347471911 4997373645 5984584273 1917179465 3644463294 1234548423 6826453721 5892467783 1211598363
Sample Output 3
685516949
Be sure to find the count modulo $998244353$.
Input
题意翻译
给定一个 $H\times W$ 由1-9构成的矩阵。两个人轮流操作,各操作 $n$ 步。 起初两人约定任意某个格子作起点,放置一个棋子。第一个人每次可以把棋子移动到任意一行,第二个人每次可以把棋子移动到任意一列。 在移动过程中,把棋子走过的数记下来,这样就构成了一个 $2\times n$ 的序列 问这个序列由多少种形式。 > $H,W\leq10,n\leq 300$Output
分数:$600$分
问题描述
有一个网格,有$H$行和$W$列,每个小方格里有一个$1$到$9$之间的数字。 对于每对整数$(i, j)$,其中$1 \leq i \leq H$和$1 \leq j \leq W$,从上数第$i$行和从左数第$j$列的方格里的数字是$c_{i, j}$。
使用这个网格,Takahashi和Aoki将一起玩游戏。 首先,Takahashi选择一个方格并放一个棋子。 然后,两人将重复以下步骤1.到4.,共$N$次。
- Takahashi执行以下两个操作之一。
- 将棋子移动到与棋子所在方格同行的另一个方格。
- 什么也不做。
- Takahashi将棋子所在方格的数字写在黑板上。
- Aoki执行以下两个操作之一。
- 将棋子移动到与棋子所在方格同列的另一个方格。
- 什么也不做。
- Aoki将棋子所在方格的数字写在黑板上。
之后,黑板上将有$2N$个数字。设$d_1, d_2, \ldots, d_{2N}$是这些数字,按照它们被书写的顺序。 两个男孩将按照这个顺序将这$2N$个数字连接起来,形成一个$2N$位整数$X := d_1d_2\ldots d_{2N}$。
求出$X$可以变成的不同整数的数量,对$998244353$取模。
约束
- $2 \leq H, W \leq 10$
- $1 \leq N \leq 300$
- $1 \leq c_{i, j} \leq 9$
- 输入中的所有值都是整数。
输入
输入通过标准输入给出以下格式:
$H$ $W$ $N$ $c_{1, 1}$$c_{1, 2}$$\cdots$$c_{1, W}$ $c_{2, 1}$$c_{2, 2}$$\cdots$$c_{2, W}$ $\vdots$ $c_{H, 1}$$c_{H, 2}$$\cdots$$c_{H, W}$
输出
打印出$X$可以变成的不同整数的数量,对$998244353$取模。
样例输入1
2 2 1 31 41
样例输出1
5
下面是可能的一种情况。
- 首先,Takahashi将棋子放在$(1, 2)$上。
- Takahashi将棋子从$(1, 2)$移动到$(1, 1)$,然后写下$(1, 1)$上的数字$3$。
- Aoki将棋子从$(1, 1)$移动到$(2, 1)$,然后写下$(2, 1)$上的数字$4$。
在这种情况下,我们有$X = 34$。
下面是另一种可能的情况。
- 首先,Takahashi将棋子放在$(2, 2)$上。
- Takahashi将棋子保留在$(2, 2)$上,然后写下$(2, 2)$上的数字$1$。
- Aoki将棋子从$(2, 2)$移动到$(1, 2)$,然后写下$(1, 2)$上的数字$1$。
在这种情况下,我们有$X = 11$。
除了这些之外,$X$还可以成为$33$、$44$或$43$,但不能成为其他数字。
也就是说,$X$可以变成的整数有五个,所以我们打印$5$。
样例输入2
2 3 4 777 777
样例输出2
1
$X$只能变成$77777777$。
样例输入3
10 10 300 3181534389 4347471911 4997373645 5984584273 1917179465 3644463294 1234548423 6826453721 5892467783 1211598363
样例输出3
685516949
确保对$998244353$取模。