102214: [AtCoder]ABC221 E - LEQ

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

Given is a sequence of $N$ integers: $A = (A_1, A_2, \dots, A_N)$.

Find the number of (not necessarily contiguous) subsequences $A'=(A'_1,A'_2,\ldots,A'_k)$ of length at least $2$ that satisfy the following condition:

  • $A'_1 \leq A'_k$.

Since the count can be enormous, print it modulo $998244353$.

Here, two subsequences are distinguished when they originate from different sets of indices, even if they are the same as sequences.

Constraints

  • $2 \leq N \leq 3 \times 10^5$
  • $1 \leq A_i \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print the number of (not necessarily contiguous) subsequences $A'=(A'_1,A'_2,\ldots,A'_k)$ of length at least $2$ that satisfy the condition in Problem Statement.


Sample Input 1

3
1 2 1

Sample Output 1

3

$A=(1,2,1)$ has four (not necessarily contiguous) subsequences of length at least $2$: $(1,2)$, $(1,1)$, $(2,1)$, $(1,2,1)$.

Three of them, $(1,2)$, $(1,1)$, $(1,2,1)$, satisfy the condition in Problem Statement.


Sample Input 2

3
1 2 2

Sample Output 2

4

Note that two subsequences are distinguished when they originate from different sets of indices, even if they are the same as sequences.

In this Sample, there are four subsequences, $(1,2)$, $(1,2)$, $(2,2)$, $(1,2,2)$, that satisfy the condition.


Sample Input 3

3
3 2 1

Sample Output 3

0

There may be no subsequence that satisfies the condition.


Sample Input 4

10
198495780 28463047 859606611 212983738 946249513 789612890 782044670 700201033 367981604 302538501

Sample Output 4

830

Input

题意翻译

给定一个长度为 $N$ 的序列 $A=(A_1,A_2,..., A_N)$。 求出子序列的总数,使得对于任意的子序列 $A'=(A'_1,A'_2,...,A'_k)$ ,满足 $A'_1 \le A'_k$ 。 **答案对 $998244353$ 取模。**

Output

得分:500分

问题描述

给定一个包含 $N$ 个整数的序列:$A = (A_1, A_2, \dots, A_N)$。

找出满足以下条件的长度至少为 $2$ 的(不一定是连续的)子序列 $A'=(A'_1,A'_2,\ldots,A'_k)$ 的数量:

  • $A'_1 \leq A'_k$。

由于计数可能非常大,请对 $998244353$ 取模后输出。

这里,如果两个子序列源自不同的索引集,即使它们作为序列相同,也认为它们是不同的。

约束条件

  • $2 \leq N \leq 3 \times 10^5$
  • $1 \leq A_i \leq 10^9$
  • 输入中的所有值都是整数。

输入

输入通过标准输入以以下格式给出:

$N$
$A_1$ $A_2$ $\ldots$ $A_N$

输出

输出满足问题描述中条件的(不一定是连续的)子序列 $A'=(A'_1,A'_2,\ldots,A'_k)$ 的数量。


样例输入 1

3
1 2 1

样例输出 1

3

$A=(1,2,1)$ 有四个长度至少为 $2$ 的(不一定是连续的)子序列:$(1,2)$, $(1,1)$, $(2,1)$, $(1,2,1)$。

其中三个,$(1,2)$, $(1,1)$, $(1,2,1)$,满足问题描述中的条件。


样例输入 2

3
1 2 2

样例输出 2

4

注意,即使两个子序列作为序列相同,只要它们源自不同的索引集,就认为它们是不同的。

在这个样例中,有四个满足条件的子序列,$(1,2)$, $(1,2)$, $(2,2)$, $(1,2,2)$。


样例输入 3

3
3 2 1

样例输出 3

0

可能没有满足条件的子序列。


样例输入 4

10
198495780 28463047 859606611 212983738 946249513 789612890 782044670 700201033 367981604 302538501

样例输出 4

830

加入题单

上一题 下一题 算法标签: