102083: [AtCoder]ABC208 D - Shortest Path Queries 2

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

There are $N$ cities and $M$ roads in the Kingdom of Takahashi.

The cities are numbered $1$ through $N$, and the roads are numbered $1$ through $M$. Road $i$ is a one-way road that leads from City $A_i$ to City $B_i$, and it takes $C_i$ minutes to go through it.

Let us define $f(s, t, k)$ as the answer to the following query.

  • Compute the minimum time needed to get from City $s$ to City $t$. Here, other than the Cities $s$ and $t$, it is only allowed to pass through Cities $1$ through $k$. If City $t$ is unreachable or $s = t$, the answer should be $0$.

Compute $f(s,t,k)$ for all triples $s,t,k$ and print the sum of them. More formally, print $\displaystyle \sum_{s = 1}^N \sum_{t = 1}^N \sum_{k = 1}^N f(s, t, k)$.

Constraints

  • $1 \leq N \leq 400$
  • $0 \leq M \leq N(N-1)$
  • $1 \leq A_i \leq N$ $(1 \leq i \leq M)$
  • $1 \leq B_i \leq N$ $(1 \leq i \leq M)$
  • $A_i \neq B_i$ $(1 \leq i \leq M)$
  • $1 \leq C_i \leq 10^6$ $(1 \leq i \leq M)$
  • $A_i \neq A_j$ or $B_i \neq B_j$, if $i \neq j$.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $B_1$ $C_1$
$\vdots$
$A_M$ $B_M$ $C_M$

Output

Print $\displaystyle \sum_{s = 1}^N \sum_{t = 1}^N \sum_{k = 1}^N f(s, t, k)$.


Sample Input 1

3 2
1 2 3
2 3 2

Sample Output 1

25

The triples $s,t,k$ such that $f(s,t,k) \neq 0$ are as follows.

  • For $k = 1$: $f(1,2,1) = 3, f(2,3,1) = 2$.
  • For $k = 2$: $f(1,2,2) = 3, f(2,3,2) = 2, f(1,3,2) = 5$.
  • For $k = 3$: $f(1,2,3) = 3, f(2,3,3) = 2, f(1,3,3) = 5$.

Sample Input 2

3 0

Sample Output 2

0

We have $f(s,t,k) = 0$ for all $s,t,k$.


Sample Input 3

5 20
1 2 6
1 3 10
1 4 4
1 5 1
2 1 5
2 3 9
2 4 8
2 5 6
3 1 5
3 2 1
3 4 7
3 5 9
4 1 4
4 2 6
4 3 4
4 5 8
5 1 2
5 2 5
5 3 6
5 4 5

Sample Output 3

517

Input

题意翻译

### 题目描述 给出一张 $n$ 个点,$m$ 条边的的有向图。设 $f(s,t,k)$ 表示从点 $s$ 到点 $t$,只经过点 $1$ 到 $k$ 以及 $s,t$ 的最短路径,如果不存在则为 $0$。 你需要求出以下式子的值: $$\sum_{s=1}^n\sum_{t=1}^n\sum_{k=1}^nf(s,t,k)$$ ### 输入格式 第一行两个数 $n,m$。 接下来 $m$ 行,每行三个数 $u_i,v_i,w_i$,表示一条从 $u_i$ 到 $v_i$,权值为 $w_i$ 的单向边。 Translated by \_Ponder_

加入题单

上一题 下一题 算法标签: