101894: [AtCoder]ABC189 E - Rotate and Flip

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

There are $N$ pieces on a two-dimensional plane. The coordinates of Piece $i$ are $(X_i,Y_i)$. There may be multiple pieces at the same coordinates.

We will do $M$ operations $\mathrm{op}_1, \ldots, \mathrm{op}_M$, one by one. There are four kinds of operations, described below along with their formats in input.

  • 1:Rotate every piece $90$ degrees clockwise about the origin;
  • 2:Rotate every piece $90$ degrees counterclockwise about the origin;
  • 3 p:Move each piece to the point symmetric to it about the line $x=p$;
  • 4 p:Move each piece to the point symmetric to it about the line $y=p$.

You are given $Q$ queries. In the $i$-th query, given two integers $A_i$ and $B_i$, print the coordinates of Piece $B_i$ just after the $A_i$-th operation. Here, the moment just before the $1$-st operation is considered to be the moment just after "the $0$-th operation".

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 2\times 10^5$
  • $1 \leq M \leq 2\times 10^5$
  • $1 \leq Q \leq 2\times 10^5$
  • $-10^9 \leq X_i,Y_i \leq 10^9$
  • $\mathrm{op}_i$ is in the format of one of the four kinds of operations.
  • In an operation with the form 3 p or 4 p, $-10^9 \leq p \leq 10^9$.
  • $0 \leq A_i \leq M$
  • $1 \leq B_i \leq N$

Input

Input is given from Standard Input in the following format:

$N$
$X_1$ $Y_1$
$\vdots$
$X_N$ $Y_N$
$M$
$\mathrm{op}_1$
$\vdots$
$\mathrm{op}_M$
$Q$
$A_1$ $B_1$
$\vdots$
$A_Q$ $B_Q$

Output

Print the response to each query in its own line: the $x$- and $y$-coordinates, in this order, with space in between.


Sample Input 1

1
1 2
4
1
3 3
2
4 2
5
0 1
1 1
2 1
3 1
4 1

Sample Output 1

1 2
2 -1
4 -1
1 4
1 0

Initially, the only piece - Piece $1$ - is at $(1, 2)$. Each operation moves the piece as follows: $(1,2)\to(2,-1)\to(4,-1)\to(1,4)\to(1,0)$.


Sample Input 2

2
1000000000 0
0 1000000000
4
3 -1000000000
4 -1000000000
3 1000000000
4 1000000000
2
4 1
4 2

Sample Output 2

5000000000 4000000000
4000000000 5000000000

Input

题意翻译

## 题目描述 给出 $N$ 个点,以及每个点得坐标 $(x_i,y_i)$,给出 $M$ 次操作,操作如下: - 第一种操作:将所有点绕原点 $(0,0)$ 顺时针旋转 $90$ 度。 - 第二种操作:将所有点绕原点 $(0,0)$ 逆时针旋转 $90$ 度。 - 第三种操作:以 $x=p$ 为对称轴,将所有的点对称过去。 - 第四种操作:以 $y=p$ 为对称轴,将所有的点对称过去。 接着给出 $Q$ 组询问,每次询问在某次操作过后某个点的坐标。 ## 输入格式 第一行输入 $N$,表示 $N$ 个点。 接下来 $N$ 行,每行输入 $x_i,y_i$,表示第 $i$ 个点的坐标。 第 $N+2$ 行输入 $M$,表示操作次数。 接下来 $M$ 行,每行首先输入 $opt_i$,表示执行第 $opt_i$ 种操作。如果 $opt_i=3$ 或者 $opt_i=4$,再输入一个数字 $p$,表示一条直线。 第 $N+M+3$ 行输入 $Q$,表示询问个数。 接下来 $Q$ 行,每行两个数字 $A_i,B_i$,表示询问在第 $A_i$ 次操作过后第 $B_i$ 个点的坐标。特别的,$A_i=0$ 表示询问初始的坐标。 ## 输出格式 输出 $Q$ 行,每行输出对于一次询问的答案。

加入题单

上一题 下一题 算法标签: