101791: [AtCoder]ABC179 B - Go to Jail

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

Score : $200$ points

Problem Statement

Tak performed the following action $N$ times: rolling two dice. The result of the $i$-th roll is $D_{i,1}$ and $D_{i,2}$.

Check if doublets occurred at least three times in a row. Specifically, check if there exists at lease one $i$ such that $D_{i,1}=D_{i,2}$, $D_{i+1,1}=D_{i+1,2}$ and $D_{i+2,1}=D_{i+2,2}$ hold.

Constraints

  • $3 \leq N \leq 100$
  • $1\leq D_{i,j} \leq 6$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$D_{1,1}$ $D_{1,2}$
$\vdots$
$D_{N,1}$ $D_{N,2}$

Output

Print Yes if doublets occurred at least three times in a row. Print No otherwise.


Sample Input 1

5
1 2
6 6
4 4
3 3
3 2

Sample Output 1

Yes

From the second roll to the fourth roll, three doublets occurred in a row.


Sample Input 2

5
1 1
2 2
3 4
5 5
6 6

Sample Output 2

No

Sample Input 3

6
1 1
2 2
3 3
4 4
5 5
6 6

Sample Output 3

Yes

Input

题意翻译

有 $n$ 组数,每组有两个数 $d_{i,1}$ 和 $d_{i,2}$ 。判断其中是否有连续的三个(及以上)的 $i$ 满足 $d_{i,1}=d_{i,2}$ ?换句话说,是否存在一个 $i$ ,使得 $d_{i,1}=d_{i,2}$ , $d_{i+1,1}=d_{i+1,2}$, $d_{i+2,1}=d_{i+2,2}$ 这三个式子全部成立?

加入题单

上一题 下一题 算法标签: