101781: [AtCoder]ABC178 B - Product Max
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $200$ points
Problem Statement
Given are integers $a,b,c$ and $d$. If $x$ and $y$ are integers and $a \leq x \leq b$ and $c\leq y \leq d$ hold, what is the maximum possible value of $x \times y$?
Constraints
- $-10^9 \leq a \leq b \leq 10^9$
- $-10^9 \leq c \leq d \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$a$ $b$ $c$ $d$
Output
Print the answer.
Sample Input 1
1 2 1 1
Sample Output 1
2
If $x = 1$ and $y = 1$ then $x \times y = 1$. If $x = 2$ and $y = 1$ then $x \times y = 2$. Therefore, the answer is $2$.
Sample Input 2
3 5 -4 -2
Sample Output 2
-6
The answer can be negative.
Sample Input 3
-1000000000 0 -1000000000 0
Sample Output 3
1000000000000000000