101761: [AtCoder]ABC176 B - Multiple of 9

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $200$ points

Problem Statement

An integer $N$ is a multiple of $9$ if and only if the sum of the digits in the decimal representation of $N$ is a multiple of $9$.

Determine whether $N$ is a multiple of $9$.

Constraints

  • $0 \leq N < 10^{200000}$
  • $N$ is an integer.

Input

Input is given from Standard Input in the following format:

$N$

Output

If $N$ is a multiple of $9$, print Yes; otherwise, print No.


Sample Input 1

123456789

Sample Output 1

Yes

The sum of these digits is $1+2+3+4+5+6+7+8+9=45$, which is a multiple of $9$, so $123456789$ is a multiple of $9$.


Sample Input 2

0

Sample Output 2

Yes

Sample Input 3

31415926535897932384626433832795028841971693993751058209749445923078164062862089986280

Sample Output 3

No

Input

题意翻译

给定一个整数 $N$ ,求 $N$ 是否能被 $9$ 整除?如果能,输出Yes;如果不能,输出No。 判定方法:如果 $N$ 的各位数之和能被 $9$ 整除,那么 $N$ 就一定能被 $9$ 整除。(注: $N$ 的取值范围为 $10$ 的 $200000$ 次方以内的所有非负整数。)

加入题单

上一题 下一题 算法标签: