101694: [AtCoder]ABC169 E - Count Median
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $500$ points
Problem Statement
There are $N$ integers $X_1, X_2, \cdots, X_N$, and we know that $A_i \leq X_i \leq B_i$. Find the number of different values that the median of $X_1, X_2, \cdots, X_N$ can take.
Notes
The median of $X_1, X_2, \cdots, X_N$ is defined as follows. Let $x_1, x_2, \cdots, x_N$ be the result of sorting $X_1, X_2, \cdots, X_N$ in ascending order.
- If $N$ is odd, the median is $x_{(N+1)/2}$;
- if $N$ is even, the median is $(x_{N/2} + x_{N/2+1}) / 2$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq B_i \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $:$ $A_N$ $B_N$
Output
Print the answer.
Sample Input 1
2 1 2 2 3
Sample Output 1
3
-
If $X_1 = 1$ and $X_2 = 2$, the median is $\frac{3}{2}$;
-
if $X_1 = 1$ and $X_2 = 3$, the median is $2$;
-
if $X_1 = 2$ and $X_2 = 2$, the median is $2$;
-
if $X_1 = 2$ and $X_2 = 3$, the median is $\frac{5}{2}$.
Thus, the median can take three values: $\frac{3}{2}$, $2$, and $\frac{5}{2}$.
Sample Input 2
3 100 100 10 10000 1 1000000000
Sample Output 2
9991