101694: [AtCoder]ABC169 E - Count Median

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

There are $N$ integers $X_1, X_2, \cdots, X_N$, and we know that $A_i \leq X_i \leq B_i$. Find the number of different values that the median of $X_1, X_2, \cdots, X_N$ can take.

Notes

The median of $X_1, X_2, \cdots, X_N$ is defined as follows. Let $x_1, x_2, \cdots, x_N$ be the result of sorting $X_1, X_2, \cdots, X_N$ in ascending order.

  • If $N$ is odd, the median is $x_{(N+1)/2}$;
  • if $N$ is even, the median is $(x_{N/2} + x_{N/2+1}) / 2$.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq B_i \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $B_1$
$A_2$ $B_2$
$:$
$A_N$ $B_N$

Output

Print the answer.


Sample Input 1

2
1 2
2 3

Sample Output 1

3
  • If $X_1 = 1$ and $X_2 = 2$, the median is $\frac{3}{2}$;

  • if $X_1 = 1$ and $X_2 = 3$, the median is $2$;

  • if $X_1 = 2$ and $X_2 = 2$, the median is $2$;

  • if $X_1 = 2$ and $X_2 = 3$, the median is $\frac{5}{2}$.

Thus, the median can take three values: $\frac{3}{2}$, $2$, and $\frac{5}{2}$.


Sample Input 2

3
100 100
10 10000
1 1000000000

Sample Output 2

9991

Input

题意翻译

### 【题目描述】 有 $N$ 个整数 $X_1, X_2, X_3,\cdots,X_N $,满足 $A_i \le X_i \le B_i$。 求 $X_1,X_2,\cdots,X_N$ 的中位数可能的不同值的数量。 ### 【输入格式】 第一行,一个整数 $N$。 接下来 $N$ 行,每行两个整数 $A_i$,$B_i$。 ### 【输出格式】 一行一个整数,代表可能的不同中位数取值。 Translated by @[immccn123](https://www.luogu.com.cn/user/385633).

加入题单

上一题 下一题 算法标签: