101652: [AtCoder]ABC165 C - Many Requirements
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
Given are positive integers $N$, $M$, $Q$, and $Q$ quadruples of integers ( $a_i$ , $b_i$ , $c_i$ , $d_i$ ).
Consider a sequence $A$ satisfying the following conditions:
- $A$ is a sequence of $N$ positive integers.
- $1 \leq A_1 \leq A_2 \le \cdots \leq A_N \leq M$.
Let us define a score of this sequence as follows:
- The score is the sum of $d_i$ over all indices $i$ such that $A_{b_i} - A_{a_i} = c_i$. (If there is no such $i$, the score is $0$.)
Find the maximum possible score of $A$.
Constraints
- All values in input are integers.
- $2 ≤ N ≤ 10$
- $1 \leq M \leq 10$
- $1 \leq Q \leq 50$
- $1 \leq a_i < b_i \leq N$ ( $i = 1, 2, ..., Q$ )
- $0 \leq c_i \leq M - 1$ ( $i = 1, 2, ..., Q$ )
- $(a_i, b_i, c_i) \neq (a_j, b_j, c_j)$ (where $i \neq j$)
- $1 \leq d_i \leq 10^5$ ( $i = 1, 2, ..., Q$ )
Input
Input is given from Standard Input in the following format:
$N$ $M$ $Q$ $a_1$ $b_1$ $c_1$ $d_1$ $:$ $a_Q$ $b_Q$ $c_Q$ $d_Q$
Output
Print the maximum possible score of $A$.
Sample Input 1
3 4 3 1 3 3 100 1 2 2 10 2 3 2 10
Sample Output 1
110
When $A = \{1, 3, 4\}$, its score is $110$. Under these conditions, no sequence has a score greater than $110$, so the answer is $110$.
Sample Input 2
4 6 10 2 4 1 86568 1 4 0 90629 2 3 0 90310 3 4 1 29211 3 4 3 78537 3 4 2 8580 1 2 1 96263 1 4 2 2156 1 2 0 94325 1 4 3 94328
Sample Output 2
357500
Sample Input 3
10 10 1 1 10 9 1
Sample Output 3
1