101633: [AtCoder]ABC163 D - Sum of Large Numbers
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
We have $N+1$ integers: $10^{100}$, $10^{100}+1$, ..., $10^{100}+N$.
We will choose $K$ or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo $(10^9+7)$.
Constraints
- $1 \leq N \leq 2\times 10^5$
- $1 \leq K \leq N+1$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $K$
Output
Print the number of possible values of the sum, modulo $(10^9+7)$.
Sample Input 1
3 2
Sample Output 1
10
The sum can take $10$ values, as follows:
- $(10^{100})+(10^{100}+1)=2\times 10^{100}+1$
- $(10^{100})+(10^{100}+2)=2\times 10^{100}+2$
- $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3$
- $(10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4$
- $(10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3$
- $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4$
- $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5$
- $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6$
Sample Input 2
200000 200001
Sample Output 2
1
We must choose all of the integers, so the sum can take just $1$ value.
Sample Input 3
141421 35623
Sample Output 3
220280457