101633: [AtCoder]ABC163 D - Sum of Large Numbers

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

We have $N+1$ integers: $10^{100}$, $10^{100}+1$, ..., $10^{100}+N$.

We will choose $K$ or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo $(10^9+7)$.

Constraints

  • $1 \leq N \leq 2\times 10^5$
  • $1 \leq K \leq N+1$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $K$

Output

Print the number of possible values of the sum, modulo $(10^9+7)$.


Sample Input 1

3 2

Sample Output 1

10

The sum can take $10$ values, as follows:

  • $(10^{100})+(10^{100}+1)=2\times 10^{100}+1$
  • $(10^{100})+(10^{100}+2)=2\times 10^{100}+2$
  • $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3$
  • $(10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4$
  • $(10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5$
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3$
  • $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4$
  • $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5$
  • $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6$
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6$

Sample Input 2

200000 200001

Sample Output 2

1

We must choose all of the integers, so the sum can take just $1$ value.


Sample Input 3

141421 35623

Sample Output 3

220280457

Input

题意翻译

给定$n+1$个数,这些数分别为: $10^{100},10^{100}+1,10^{100}+2$...$10^{100}+n$ 若在其中选择不少于$k$个数,请问存在多少种不同的和? 由于答案可能过大,请将其对$10^9+7$取模。

加入题单

算法标签: