101524: [AtCoder]ABC152 E - Flatten

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

Given are $N$ positive integers $A_1,...,A_N$.

Consider positive integers $B_1, ..., B_N$ that satisfy the following condition.

Condition: For any $i, j$ such that $1 \leq i < j \leq N$, $A_i B_i = A_j B_j$ holds.

Find the minimum possible value of $B_1 + ... + B_N$ for such $B_1,...,B_N$.

Since the answer can be enormous, print the sum modulo ($10^9 +7$).

Constraints

  • $1 \leq N \leq 10^4$
  • $1 \leq A_i \leq 10^6$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $...$ $A_N$

Output

Print the minimum possible value of $B_1 + ... + B_N$ for $B_1,...,B_N$ that satisfy the condition, modulo ($10^9 +7$).


Sample Input 1

3
2 3 4

Sample Output 1

13

Let $B_1=6$, $B_2=4$, and $B_3=3$, and the condition will be satisfied.


Sample Input 2

5
12 12 12 12 12

Sample Output 2

5

We can let all $B_i$ be $1$.


Sample Input 3

3
1000000 999999 999998

Sample Output 3

996989508

Print the sum modulo $(10^9+7)$.

Input

题意翻译

给定 $N$ 个正整数 $A_1, A_2, \cdots, A_N$。 构造一个长度为 $N$ 的正整数序列 $B$,满足 - 对于任意正整数 $i,j$,有 $A_iB_i = A_jB_j$ 求出序列 $B$ 各数的和的最小值,对 $10^9+7$ 取模。

加入题单

上一题 下一题 算法标签: