101484: [AtCoder]ABC148 E - Double Factorial
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:31
Solved:8
Description
Score : $500$ points
Problem Statement
For an integer $n$ not less than $0$, let us define $f(n)$ as follows:
- $f(n) = 1$ (if $n < 2$)
- $f(n) = n f(n-2)$ (if $n \geq 2$)
Given is an integer $N$. Find the number of trailing zeros in the decimal notation of $f(N)$.
Constraints
- $0 \leq N \leq 10^{18}$
Input
Input is given from Standard Input in the following format:
$N$
Output
Print the number of trailing zeros in the decimal notation of $f(N)$.
Sample Input 1
12
Sample Output 1
1
$f(12) = 12 × 10 × 8 × 6 × 4 × 2 = 46080$, which has one trailing zero.
Sample Input 2
5
Sample Output 2
0
$f(5) = 5 × 3 × 1 = 15$, which has no trailing zeros.
Sample Input 3
1000000000000000000
Sample Output 3
124999999999999995
Input
题意翻译
输入一个n。 如果n是奇数那么输出0。 如果n是偶数那么输出$(\frac{n}{2})!$末尾零的个数除以二得到的商。Sample Input Copy
Sample Output Copy
HINT
输出f(n)末尾零的数量