101393: [AtCoder]ABC139 D - ModSum
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
For an integer $N$, we will choose a permutation $\{P_1, P_2, ..., P_N\}$ of $\{1, 2, ..., N\}$.
Then, for each $i=1,2,...,N$, let $M_i$ be the remainder when $i$ is divided by $P_i$.
Find the maximum possible value of $M_1 + M_2 + \cdots + M_N$.
Constraints
- $N$ is an integer satisfying $1 \leq N \leq 10^9$.
Input
Input is given from Standard Input in the following format:
$N$
Output
Print the maximum possible value of $M_1 + M_2 + \cdots + M_N$.
Sample Input 1
2
Sample Output 1
1
When the permutation $\{P_1, P_2\} = \{2, 1\}$ is chosen, $M_1 + M_2 = 1 + 0 = 1$.
Sample Input 2
13
Sample Output 2
78
Sample Input 3
1
Sample Output 3
0