101274: [AtCoder]ABC127 E - Cell Distance

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

We have a grid of squares with $N$ rows and $M$ columns. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left. We will choose $K$ of the squares and put a piece on each of them.

If we place the $K$ pieces on squares $(x_1, y_1)$, $(x_2, y_2)$, ..., and $(x_K, y_K)$, the cost of this arrangement is computed as:

$\sum_{i=1}^{K-1} \sum_{j=i+1}^K (|x_i - x_j| + |y_i - y_j|)$

Find the sum of the costs of all possible arrangements of the pieces. Since this value can be tremendous, print it modulo $10^9+7$.

We consider two arrangements of the pieces different if and only if there is a square that contains a piece in one of the arrangements but not in the other.

Constraints

  • $2 \leq N \times M \leq 2 \times 10^5$
  • $2 \leq K \leq N \times M$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$ $K$

Output

Print the sum of the costs of all possible arrangements of the pieces, modulo $10^9+7$.


Sample Input 1

2 2 2

Sample Output 1

8

There are six possible arrangements of the pieces, as follows:

  • $((1,1),(1,2))$, with the cost $|1-1|+|1-2| = 1$
  • $((1,1),(2,1))$, with the cost $|1-2|+|1-1| = 1$
  • $((1,1),(2,2))$, with the cost $|1-2|+|1-2| = 2$
  • $((1,2),(2,1))$, with the cost $|1-2|+|2-1| = 2$
  • $((1,2),(2,2))$, with the cost $|1-2|+|2-2| = 1$
  • $((2,1),(2,2))$, with the cost $|2-2|+|1-2| = 1$

The sum of these costs is $8$.


Sample Input 2

4 5 4

Sample Output 2

87210

Sample Input 3

100 100 5000

Sample Output 3

817260251

Be sure to print the sum modulo $10^9+7$.

Input

题意翻译

### 题目描述 有一个 $n \times m$ 的矩形,你会从中选出 $k$ 个坐标为整数的位置 $(x_1,y_1),(x_2,y_2)\dots(x_{k},y_{k})$ 。 你定义一个选出 $k$ 个位置的方案的权值为$\textstyle \sum_{i=1}^{k-1}\sum_{j=i+1}^{k}(|x_{i}-x_{j}|+|y_{i}-y_{j}|)$ 你需要求出,所有可能的选出 $k$ 个位置的方案的权值之和,答案对 $1000000007$ 取模 ### 输入格式 一行三个整数 $n,m,k$ ### 输出格式 一行一个整数,表示答案 ### 数据范围与提示 $2 \le k \le n \times m \le 200000$

加入题单

上一题 下一题 算法标签: