101264: [AtCoder]ABC126 E - 1 or 2

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

There are $N$ cards placed face down in a row. On each card, an integer $1$ or $2$ is written.

Let $A_i$ be the integer written on the $i$-th card.

Your objective is to guess $A_1, A_2, ..., A_N$ correctly.

You know the following facts:

  • For each $i = 1, 2, ..., M$, the value $A_{X_i} + A_{Y_i} + Z_i$ is an even number.

You are a magician and can use the following magic any number of times:

Magic: Choose one card and know the integer $A_i$ written on it. The cost of using this magic is $1$.

What is the minimum cost required to determine all of $A_1, A_2, ..., A_N$?

It is guaranteed that there is no contradiction in given input.

Constraints

  • All values in input are integers.
  • $2 \leq N \leq 10^5$
  • $1 \leq M \leq 10^5$
  • $1 \leq X_i < Y_i \leq N$
  • $1 \leq Z_i \leq 100$
  • The pairs $(X_i, Y_i)$ are distinct.
  • There is no contradiction in input. (That is, there exist integers $A_1, A_2, ..., A_N$ that satisfy the conditions.)

Input

Input is given from Standard Input in the following format:

$N$ $M$
$X_1$ $Y_1$ $Z_1$
$X_2$ $Y_2$ $Z_2$
$\vdots$
$X_M$ $Y_M$ $Z_M$

Output

Print the minimum total cost required to determine all of $A_1, A_2, ..., A_N$.


Sample Input 1

3 1
1 2 1

Sample Output 1

2

You can determine all of $A_1, A_2, A_3$ by using the magic for the first and third cards.


Sample Input 2

6 5
1 2 1
2 3 2
1 3 3
4 5 4
5 6 5

Sample Output 2

2

Sample Input 3

100000 1
1 100000 100

Sample Output 3

99999

Input

题意翻译

有一个含有 $N(2\le N\le 10^5)$ 个数的序列 $A$。序列中数仅含有 $1$ 和 $2$。 你不知道这个序列的具体内容,但是你知道 $M(1\le M\le 10^5)$ 组关系。每组关系形如 $X_i\ \ Y_i\ \ Z_i$,表示 $A_{X_i}+A_{Y_i}+Z_i$ 为偶数。 问:当你知道了这些关系之后,你最少需要确定多少个序列中的数才能进而确定整个序列。

加入题单

上一题 下一题 算法标签: