101252: [AtCoder]ABC125 C - GCD on Blackboard

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

There are $N$ integers, $A_1, A_2, ..., A_N$, written on the blackboard.

You will choose one of them and replace it with an integer of your choice between $1$ and $10^9$ (inclusive), possibly the same as the integer originally written.

Find the maximum possible greatest common divisor of the $N$ integers on the blackboard after your move.

Constraints

  • All values in input are integers.
  • $2 \leq N \leq 10^5$
  • $1 \leq A_i \leq 10^9$

Output

Input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $...$ $A_N$

Output

Print the maximum possible greatest common divisor of the $N$ integers on the blackboard after your move.


Sample Input 1

3
7 6 8

Sample Output 1

2

If we replace $7$ with $4$, the greatest common divisor of the three integers on the blackboard will be $2$, which is the maximum possible value.


Sample Input 2

3
12 15 18

Sample Output 2

6

Sample Input 3

2
1000000000 1000000000

Sample Output 3

1000000000

We can replace an integer with itself.

Input

题意翻译

黑板上写着 $N$ 个整数 $A_1,A_2,...,A_N$。 您将选择其中之一,并用您选择的 $1$ 到 $10^{9}$(包括 $10^{9}$)之间的整数替换它,该整数可能与原始写入的整数相同。 移动后,在黑板上找到 $N$ 个整数的最大可能的最大公约数。

加入题单

上一题 下一题 算法标签: