101152: [AtCoder]ABC115 C - Christmas Eve

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

In some other world, today is Christmas Eve.

There are $N$ trees planted in Mr. Takaha's garden. The height of the $i$-th tree $(1 \leq i \leq N)$ is $h_i$ meters.

He decides to choose $K$ trees from these trees and decorate them with electric lights. To make the scenery more beautiful, the heights of the decorated trees should be as close to each other as possible.

More specifically, let the height of the tallest decorated tree be $h_{max}$ meters, and the height of the shortest decorated tree be $h_{min}$ meters. The smaller the value $h_{max} - h_{min}$ is, the better. What is the minimum possible value of $h_{max} - h_{min}$?

Constraints

  • $2 \leq K < N \leq 10^5$
  • $1 \leq h_i \leq 10^9$
  • $h_i$ is an integer.

Input

Input is given from Standard Input in the following format:

$N$ $K$
$h_1$
$h_2$
$:$
$h_N$

Output

Print the minimum possible value of $h_{max} - h_{min}$.


Sample Input 1

5 3
10
15
11
14
12

Sample Output 1

2

If we decorate the first, third and fifth trees, $h_{max} = 12, h_{min} = 10$ so $h_{max} - h_{min} = 2$. This is optimal.


Sample Input 2

5 3
5
7
5
7
7

Sample Output 2

0

If we decorate the second, fourth and fifth trees, $h_{max} = 7, h_{min} = 7$ so $h_{max} - h_{min} = 0$. This is optimal.

There are not too many trees in these sample inputs, but note that there can be at most one hundred thousand trees (we just can't put a sample with a hundred thousand lines here).

Input

题意翻译

在另一个世界中,今天是平安夜。 高叶先生的花园里种了 $N$ 棵树。 第 $i$ 棵树的高度 $(1 \leq i \leq N)$为 $h_i$ 米。 他决定从这些树中选择 $K$ 棵树,并用电灯装饰它们。 为了使风景更美,装饰树的高度应尽可能彼此靠近。 更具体地说,让最高装饰树的高度为 $h_{max}$ 米,让最低装饰树的高度为 $h_{min}$ 米, $h_{max}-h_{min}$ 值越小越好。$h_{max}-h_{min}$ 的最小可能值是多少?

加入题单

上一题 下一题 算法标签: