101103: [AtCoder]ABC110 D - Factorization

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

You are given positive integers $N$ and $M$.

How many sequences $a$ of length $N$ consisting of positive integers satisfy $a_1 \times a_2 \times ... \times a_N = M$? Find the count modulo $10^9+7$.

Here, two sequences $a'$ and $a''$ are considered different when there exists some $i$ such that $a_i' \neq a_i''$.

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 10^5$
  • $1 \leq M \leq 10^9$

Input

Input is given from Standard Input in the following format:

$N$ $M$

Output

Print the number of the sequences consisting of positive integers that satisfy the condition, modulo $10^9 + 7$.


Sample Input 1

2 6

Sample Output 1

4

Four sequences satisfy the condition: $\{a_1, a_2\} = \{1, 6\}, \{2, 3\}, \{3, 2\}$ and $\{6, 1\}$.


Sample Input 2

3 12

Sample Output 2

18

Sample Input 3

100000 1000000000

Sample Output 3

957870001

Input

题意翻译

# 题目大意 输入两个整数$N$和$M$, 输出$N$个数连乘结果等于$M$的数量,模$10^9+7$。 如果两个连乘序列$A$和$B$中存在任意$i$符合$A_i\ne B_i$,那么这两个序列就是不同的。(如$\lbrace1,6\rbrace$与$\lbrace6,1\rbrace$是不同的) # 输入 一行两个整数$N$和$M$,以空格隔开: ``` N M ``` # 输出 输出一行,即$N$个数连乘结果等于$M$的数量,模$10^9+7$。 # 样例解释1 $N=2,M=5$时,有四种解法: - $1*6=6$ - $2*3=6$ - $3*2=6$ - $1*6=6$

加入题单

上一题 下一题 算法标签: