101032: [AtCoder]ABC103 C - Modulo Summation

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

You are given $N$ positive integers $a_1, a_2, ..., a_N$.

For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.

Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.

Find the maximum value of $f$.

Constraints

  • All values in input are integers.
  • $2 \leq N \leq 3000$
  • $2 \leq a_i \leq 10^5$

Input

Input is given from Standard Input in the following format:

$N$
$a_1$ $a_2$ $...$ $a_N$

Output

Print the maximum value of $f$.


Sample Input 1

3
3 4 6

Sample Output 1

10

$f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10$ is the maximum value of $f$.


Sample Input 2

5
7 46 11 20 11

Sample Output 2

90

Sample Input 3

7
994 518 941 851 647 2 581

Sample Output 3

4527

Input

题意翻译

输入 $N$ 和 $a_1,a_2,\ldots,a_N$。 令 $f(m)=(m\bmod a_1)+(m\bmod a_2)+\ldots+(m\bmod a_N)$ 问 $f(m)$ 最大是多少($m$ 可为任意整数)。 其中 $2\le N\le 3000,2\le a_i\le 10^5$。

加入题单

上一题 下一题 算法标签: